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. GOAL: PROVIDE TRUST IN LOW-RANK TENSOR DECOMPOSITIONS\

Low-rank tensor models/decompositions are useful in many data analysis applications
Scientific computing, cybersecurity, remote sensing, text analysis, ...

Combustion Compression: ~7700X Subset/Sample of
Simulation Model Error: ¢ = 1e-1 Data
Tensor Data
How good is a model How good is a model
given the data? Given a sample of the data?
Cramer-Rao Bounds Sampling complexity

Current state-of-the-art:
= Efficient algorithms for several data models (Canonical Polyadic [CP], Tucker, tensor train, ...)
= Some models (e.g., CP) provide useful interpretations of latent features/patterns/signals in data
= No general approaches exist for assessing how trustworthy these models are




> PROJECT ACCOMPLISHMENTS TO DATE \\
AN

Zero-truncated Poisson regression for sparse multiway count data corrupted by false zeros \
= Advance: Understand the impact of untrusted/incomplete data in low-rank matrix and tensor modeling

= Benefits: Faster, scalable low-rank decompositions with guaranteed minimal introduction of modeling error

Spectral gap-based deterministic tensor completion
= Advance: Improved error bounds on tensor completion using deterministic sampling

= Benefits: Near-optimal error analysis for problems where sampling may be constrained (e.g., sensor placement
problems)

Minimax Rates in Constrained Poisson Tensors: Upper and Lower Bounds
= Advance: Extension of existing low-rank matrix modeling with data constraints to tensor data

= Benefits: Provides both lower (Cramer-Rao, best expected error) and upper (worst case, in expectation) error bounds

On a Latent-Variable Formulation of the Poisson Canonical Polyadic Tensor Model
= Advance: Formulation of existing low-rank matrix (NMF) and tensor (CP-APR) decompositions in

Expectation Maximization framework
= Benefits: Statistical error analyses, Fisher information matrix, sensitivity analyses,
new model fitting algorithms




* KEY RESULT: CRAMER-RAO BOUNDS FOR POISSON CP MODEL \\
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Challenges:

- Well posedness (identifiability)

- Inversion

Jacobian identity
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Challenges:
- biased estimators (MLE)




Simulation Setup
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NEXT STEPS N

AN
Analysis of biased estimators for (variety of) tensor models (different tensor \
models are used for answering a variety of questions in different applications)
« Extend our results from CP to Tucker, Tensor Train, etc.
« Extend our results from Poisson to GCP

Bridging signal processing (sampling complexity) and statistics (FIM/CRLB) view of
tensor modeling

(Near) Optimal sampling complexity

Produce software to allow others to use these new analysis techniques
* As part of the pyttb python software




THANK YOU!

Probabilistic Guarantees for Low-Rank Tensor Decompositions
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