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OVERVIEW
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scalar vector matrix tensor

• Goal: Understand key relationships in tensor data

• Current approach
• Low-rank tensor models (canonical polyadic, Tucker, tensor train, …)

• Parameter inference via maximum likelihood estimation

• Our approach
• Latent-variable model formulation

• Parameter inference via complete-data loglikelihood

• EM algorithms for maximum likelihood estimation

• Fisher information matrix 



FROM DENSE-CONTINUOUS TO SPARSE-DISCRETE TENSOR DATA ANALYSIS
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• Sparse data: only ~1% of entries are observed
• Ranking data (1-5)
• Winner algorithm used matrix factorization 

techniques
• This led to increased interest in non-Gaussian 

matrix factorization

ICEWS Database [2] 

• Countries as receivers and senders
• Events such as threats or aid
• Count data: number of times an event 

happens from a receiver to a sender
• Sparse data, low-count data

[1] Bennett and Lanning, The Netflix Prize, Proc. of KDD Cup and Workshop, 2007.
[2] O’Brien, Crisis Early Warning and Decision Support: Contemporary Approaches and Thoughts on Future Research, ISR, 2010.

Netflix Prize [1]



POISSON CANONICAL POLYADIC (PCP) TENSOR MODEL [3][4]
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The count tensor  follows a Poisson distribution element-wise 

The parameter tensor is imposed a Canonical Polyadic tensor structure

[4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012.

[3] Lee and Seung, Algorithms for Non-negative Matrix Factorization, NeurIPS 2000.

We present results for 3-
way tensors, but our work 

generalizes to arbitrary 
D-way tensors

+ constant



PCP TENSOR MODEL: CHALLENGES AND APPROACHES
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[4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012.
[3] Lee and Seung, Algorithms for Non-negative Matrix Factorization, NeurIPS 2000.

Optimization Approach [3,4] Probabilistic Approach [5]Our Approach

How to efficiently optimize the 
loglikelihood?
• MM optimization [3,4]

• Higher order methods

How many entries do I need to 
recover       ?
• Matrix/tensor completion
• Typically an upper bound on MSE

PCP is a latent-variable 
model!
• EM algorithms
• Fisher information 

Evaluate model and fit
• Well-posed statistical problems
• Evaluate convergence of algorithm

[5] Cao and Xie, Poisson Matrix Recovery and Completion, IEEE TSP 2016  

Their MM algorithms are 
actually EM algorithms! 

Our Fisher Info can be used for 
Fisher scoring optimization!

Our Fisher Info can be used for 
Cramer Rao bounds on MSE!

+ constant



FIRST MAIN RESULT: PCP IS A LATENT-VARIABLE MODEL
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Random Variable Latent Random Variable 

follows a rank-R PCP model

is the sum of R independent       
each following a rank-1 PCP model



PCP AS A LATENT-VARIABLE MODEL
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Observed Data 

Complete Data

Latent 
mechanism

Loglikelihood

Complete loglikelihood

Missing loglikelihood



SECOND MAIN RESULT: EXISTING MM ALGORITHMS CAN BE 
DERIVED AS EM ALGORITHMS

8

E-step

CM-step Here      is split into 3 blocks, corresponding to A, B and C.

[4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012.

[3] Lee and Seung, Algorithms for Non-negative Matrix Factorization, NeurIPS 2000.

This is the mean of a 
multinomial

This is the update used in 
[3] and [4]!!

Solve

This is EM algorithm!



A PATH TOWARDS THE FISHER INFORMATION
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observed
information

complete
information

missing
information

“observed information” equals the “complete information” minus the “missing information”

[6] Orchard and Woodbury, A missing information principle: theory and applications, Berkeley Symp. on Math. Statist. and Prob., 1972

The Missing Information Principle [6]



RANK 1 PCP CASE: FISHER INFORMATION MATRIX
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When R=1, the complete data is observed                   . No information is lost. 

Model

Parameter 
Vector

Loglikelihood

Fisher
 Information

• Above we are parameterizing      so that                 and                          . Any parameterization follows from this

• For      of size                              ,              is square with                                 rows and columns

•            is singular of rank  

• The FIM is nonsingular if you remove any one entry from     and any one entry from 

+ constant



GENERAL RANK PCP CASE, AND OAKES’ THEOREM 
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• For the general rank case, we have missing information.
• Unlike Gaussian CP, the Fisher information for R=1 is not a special case of general rank
• Direct differentiation of the loglikelihood is challenging
• We can leverage the missing information principle

• Many techniques exist for obtaining/estimating                            from the complete loglikelihood 

• Most popular is Louis’ method [7], but can only be evaluated at the MLE.

•  I use Oakes’ method [8], which is more general:

Similar to 
R=1 case

Challenging
 

[7] Louis, Finding the Observed Information Matrix when Using the EM Algorithm, JRSSB 1982
[8] Oakes, Direct Calculation of the Information Matrix via the EM Algorithm, JRSSB 1999

Latent 
mechanism



GENERAL RANK PCP: FISHER INFORMATION MATRIX
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Model
Parameter Vector

Loglikelihood

Fisher
 Information

•              is a 3 x 3 block matrix, where each block is itself a R x R block matrix 

• Above is for arbitrary parameterization of

• For      of size                                ,              is square with                                     rows and columns

•            is singular of rank  

• The FIM is nonsingular if you remove one entry from each column of B, and one entry from each column of C



BIAS-VARIANCE TRADE-OFF AND THE CRAMER-RAO LOWER BOUND
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Monte-Carlo Study



BIAS-VARIANCE TRADE-OFF AND THE CRAMER-RAO LOWER BOUND
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Cramer-Rao Lower Bound

Alternative score expression

Jacobian identity

Score simplification

Simulation Setup
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CONCLUSIONS AND PATH FORWARD
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• PCP is a very popular method, we demonstrate it’s a latent variable model
• Applications in topic modeling, document clustering and classification, poll analysis,  etc.
• We allow for parameter inference through complete loglikelihood

• We rediscover popular estimating algorithms as instances of EM algorithms
• Shed light on the properties of existing algorithms
• Help bridge two fields of machine learning research 

• Derived novel Fisher information matrix, using the missing information principle
• Can be used to propose new Fisher scoring algorithms, Cramer Rao inequalities
• Allows us to gauge the conditions for a well-posed parameter inference problem

• Variance-trade off simulation study
• Bias-variance trade-off of PCP
• Comparison against CRLB
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Carlos Llosa  cjllosa@sandia.gov

THANK YOU!

The Poisson Canonical Polyadic Tensor Model    
as a Latent-Variable Model

mailto:cjllosa@sandia.gov
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