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Elliptically-contoured TV distributions and its properties



The tensor-variate normal (TVN) distribution

The TVN distribution:
X~ Nn(M,%1,...,5p) <= vec(X — M) ~ Nin(0,®}_, %),

where m = (ms,...,mp) and m =[], mg.

m Defined through its vectorization.
m Kronecker-separable (KS) covariance structure.

m What other symmetric TV distributions can be defined
through vectorization and enjoy KS covariance structure?
Elliptically-contoured tensor-variate distributions



Spherical tensor-variate distributions

X~ Splp) = vx(2)=¢((Z,2))
— fx(X) = Q((X X))

< vec(X) g Ivec(X) V orthogonal I'.

m h=(hy,hy... . hp)
m ¢ is called the characteristic generator.

m g is called the density generator.
WX~ Np(0,ln,Iny,- -5 1n,) if p(u) = exp(—u/2)



Elliptically-contoured (EC) tensor-variate (TV) distributions

Y~ ECm(M, Ta,.. ., Tp, ) < Yy(Z) = €PMp((Z,[Z; 55, Tp])
= —1®zk\ o0z, M)

=YL M+[X;Q,..,Q]

m D% (Y, M) is the squared Mahalanobis distance
DRV, M) = (V= M, [V - M, 5]

B X ~ Sp(p) and Q,Q] = Xy is positive definite forall k=1,...,p.
BY~Np(M,%,.., %) if p(u) = exp(—u/2)



Types of EC TV distributions

L —1/2
W = ng(Ma i, 2p, 99) — fy(y) = ‘ ® Zf?’ / g(DZZ(y M))
k=p
Distribution Additional g(x) x
parameters
Normal = exp(—x/2)
Student's-t qg>0 (1+ g~ x)—(@+m)/2
Pearson Type VIl g>0 (1+x/q)~"
Kotz Type qg>0 XM= exp(—Qgx)
Logistic - exp(—x)/(1+ exp(—x))?
Power exponential qg>0 exp(—x9/2)




Scale mixture of TVN subfamily

If the DG g has the inverse Laplace transform A='[g(s)], then (Chu, 73)

| | me(O,I_WZhA..,Xﬂ) is the TVN PDF.
m w(t) = (2m)™/2t=m/2Xx""[g(2s)](t) is a weight function.

m If w was the PDF of a positive random variable Z, then

VNZ=2)~ Nn(M,z7'E1,5,,.., T,).



Distribution of Reshapings

k
Theorem: for m_, = [[ mqg and n, = [[ mq
q#R q=1

1
Y~ ECm(M, 1, ., Tp,¢) <= vec(Y) ~ ECm(vec(M), (X) Ty, ¢)
g=1

1
= Yy ~ ECmpm_) (Mk), Tk, ® Yk, 0)
q#k
1 R+1

= Vs ~ EC(npmingyMcrs, Q) i, Q) L, )
i=k i=p



Distribution of Tucker product

Theorem:

Y ~ECH(M, T, ., Xp, ) =
[V: Av o Apl ~ ECA(IM; Ave . AT ATEAAT L ApTpAS L 0)

m here A, e R™*Mc and n = (n4,...,Np).

m Marginal distributions follow by chosing A, appropiately



Conditional distributions

Theorem: Partition Y ~ ECm(M, X1,...,Xp, p) and M over the
p-th mode: Y1, My € ROKSMXM and Y, M, € ROG= mxn
(n1 4+ ny = myp), and let £;; € R"*" be the (i, j)th block of X,:

y'l’(yz — yZ) ~ gc(mq,...,mp,hm) <M7 217- cy Zp—h ipv @)

M= M+ (V2 — My) xp (Tn¥s,)

mY, =Y - IpX, Iy

B o) =E[.|Y2 =],

m Conditional distribution along multiple modes is possible.

m This is the TV extension of (Cambanis et.al, 81)
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Theorem: Let Y ~ ECm(M, X1,..., Xp, ¢), then
E(Y,) = m;.
E(Y,'Yj) = m,»mj — 2(,0/(0)0,']'.
E(Y;Y;Yr)=mim;mp—2¢'(0)(Mjopi+mjoip+mea;).
comments:

W= (i1,.ip) = (1y-uip) R= (R, ., Rp), L= (1, [p)
m Y(ir,...,0p) = Yi, M(in,...,ip) = mj, ojj = HZ:1 Y4(ig,Jq)
m We describe how to derive higher moments.

n



Moments Il

Theorem: Let Y ~ ECm(M, X1,..., Xp, @) and
D2(X) = (X, [X; Avs. ., Aol

E(Y) = M.
Var(vec(V)) = —2¢(0) § .
=p
Ifn, = mpforallk=1,2,...,p then E (Dﬁ(y)) = D3(M) — 24 (0) 1 tr(ZpA] )-
If Vis of size ny X ny X ... x np,then
E((V, [Vi A, - AY) = (W, [M A, - A M — 207 (0)[ VS E4A] .. ,):pApTL

Ifn, = mgforallk =1,2,...,p, then

4
E(DA(V)Y) = Di(M)Mfzgz'(O)[Htr(ikA,;r)MJr[M; TiAL -, oA HIM: TiA L, szpT]]
k=1

E \fM:O,g;(“)(O)<ooandn,e:m?:m,?foral{k:LZ,u.,p,then

P P P
E(D3(V)05()) = 4 () T {tr(ArTr) tr(BeZe)} + [T er(AeTrBy o) + [ ] tr(AeTeBrTr)]-
k=1 k=1 k=1
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Maximum likelihood estimation
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MLE setting I: Independent TVN sample

Consider V1,4, ..., Y, from N'm(0, 0751, %5, ..., X))

m MLE studied by (Dutilleul 13, Hoff 11, Ohlson 13, Akdemir 11).
m let S, = 2721 yi(k)z:ley,'/(;?)
m MLE without regard for identifiability:

S = Se/(NM_po?)
m Constrained optimization under X(1,1) = 1:
S = ADJUST(nm_g, 02, S).

m ADJUST procedure of Glanz and Carvalho (JMA, 18).

m 57 = tr(SeZ;")/(nm)
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MLE setting Il: Uncorrelated sample

Theorem: Let Y ~ ECim nm (M, 02E1, Xa,. ., Xp, In, ©). Then:
yi = y Xp e;’n ~ 5Cm(Ma 02217 223- OES) ZD; (p)
E (vec(Yi — M) vec(Y;—M)") =0

Consider an uncorrelated sample Yy,..., Y, from Y. Then the MLE of
(M, X4,..., X)) are the same to that under

Vi N (M, 0251, 5p).

m Provided h(d) = d"™/?g(d) has a finite positive maximum dg.
m o= %&2, where 52 is the MLE under TVN.

m This is the TV extension of (Anderson et.al., 86).
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MLE setting Ill: Independent TVN scale mixture

Consider 1,5, ..., Y, iid realizations from
2
YI(Z =2) ~ Nm(M, %zhzz, %), Z~P
Conditional (on ), ..., Y,) expectation of the complete loglikelihood:
n 1 <
Q(0;00) = 3 log|o’E| - = S 2902 (v, M),
i=1
AECM algorithm:

m E-step: obtain ?ft) =Eoo (Z|Y))Vi=1,2,...,n.
m CM step 1:

t+1) ZA(t )/ ZA(t

m Remaining ECM steps: Take Y = \E, (V) — M) for
I=1,2,...,nand do one iteration of the iterative TVN algorithm.



MLE setting IV: TOTR under TVN scale mixture errors

Consider fori=1,2,...,n the ToTR model
Y= (XIB) + &,

where &; follow a TVN scale mixture. Conditional (on )4,...,Vn)
expectation of the complete loglikelihood:

n 1 <
Q(6; ) =~ log 0% | - s >R, (x0B))
i=1

(1) (1)
where (yﬁ,)(ﬁ) =(VZ V7 X)
AECM algorithm:
m E-step: obtain ’zf.t) = Epn(Zj|Y;) and (yv(vt)i, XV(V?) Vi=12,...,n.
m CM steps: Do one iteration of the respective ToTR algorithm
under TVN errors.



MLE setting V: Robust Tyler Estimator

If Y ~ ECm(0,02%1,...,,, ¢), then Z = Y/||Y|| has PDF

r(m/2) — _ _
fz(2) = 72 x| 1/2D§:(Z, 0) m/2
Consider realizations )1, ..., Y, realizations, then for fixed ¥_, and

Sip = y,-(,?)z:ky{,?), a constrained fixed-point iteration algorithm:

n
n Sik
X = ADJUST —,1,§ — =
R, (t+1) (mk — tr(zkygt)s/k)>

Iterative algorithm:

(1) perform the fixed-point algorithm with lax convergence for x;

(p) perform the fixed-point algorithm with lax convergence for ¥,

(p+ 1) return to step 1 or stop if convergence is met.



Performance evaluations
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Simulation I: setup

TVN model: Y; ~ N (M, 0%%, ..., %)
Gamma scale mixture (GSM) model:

a—2 ,

YillZi = 2z) ~ Nn(M, =—=0"%,... . Xe),  Zi~Gamma(a/2,b/2)

m (a,b) =(3,15),n =10 and o = 2,6,10. In E-step we need :
m+a
azz(yh )

mm=(7,9,3,23,7,3). X taken from Wy, (my, Im,).

zi=EZ|(Yi=)] =

m Rearranged M is color image of size (7% 9%3) x (23%7) x 3
m Generated from TVN and GSM, fitted TVN, GSM and Tyler models.
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Simulation Il: estimate of M

—

M B2 M
Original Image Sample Data TVN Data GSM Data
< m
S g
3
g
—
5 &
o
o s
2 6 10 2 6 10
o

m Tyler also proposed a fixed-point algorithm for M that we

adapt as
n

R = (32 /5%, Figg) /(32 1/Dx(%, o).

i=1 i=1
m Sample data and estimates are noisier with increasing o

m M looks slightly noisier for TVN fit on GSM data A



Simulation Ill: comparison against TVN estimate of X

100 distinct X from Wy, (Mg, Im,) for each settingand k =1,2,...,6.
M 3y b Sy pof 3 s

<§ iR Q - Q -l . AR @
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VVar(¥(1,1,1,1,1,1))/7.5 VVar(¥(1,1,1,1,1,1))/7.5 VVar(Y(1,1,1,1,1,1))/7.5

Fitted Model B Tyler's B8 GSM

mY, cREXB ¥, c R ¥, ¥ € R, %5, ¥ € R3%3,
m TVN data is equally fitted by all models.
m TVN model is outperformed for GSM data.
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Data applications
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Labeled faces in the wild: Data

m We selected 605 facial images from more than 13,000.
m Three ethnic origins: African, European and Asian.
m Four cohorts: child, youth, middle-aged and senior.

m Two genders: male and female.

2%



Labeled faces in the wild: model comparison

Vet = (Xj|B) + Eijrts  Eijpt ~ tmy (v;0,0°E4, X5, T3), (1)

covariate Xjj, € R23*4 is 0-1 and B € R2X3x4x151x111x3,
Response Y and mean (Xj|B) € RT3,

Used the TT and CP formats, along with unformatted B.

compared them against the model with TVN responses of
chapter 2.

m estimated DF of 0.88 (BIC of -24,065,217), so fixed at 2.01.

Format of B
T CP none
Error Model TVN | -11,190,861 -11,223,595 -4,745,807
TV-t | -23,992,185 -24,064,833 -20,043,342
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Labeled faces in the wild: B estimate

Youth Middle-aged Senior ) Youth Middle-aged Senior
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Predicting dogs and cats from the AFHQ database

m Animal image classification has implications in ecology.

m The animal faces HQ (AFHQ) dataset of (Choi et.al, 20) consists
of 5,653 cat and 5,239 dog images, each of size 512 x 512.

m 500 of each animal were selected by authors for testing.

m Radon + DWT(LL) transforms were taken to each image.

IR T

4 _
I o X

J} Radon + DWT for 1 RGB channe

Ll

LA
L F IS AN
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Dog and cat classification: discriminant analysis

Optimal Bayes rule (under equal prior) classifies an image X as cat if

LLR(X) = log feat(X) — log faog(X) > 0

m feq and fyoq are population PDFS, that can be estimated based
on the training data and a statistical model.

m QDA: distinct population variances.
m LDA: equal population variances. ML fitting through TANOVA.
m We used the TVN and TV-t models.

m 3 is CP-formatted, with rank chosen using cross validation.
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Dog and cat classification: PR and ROC curves

m Fitted selected models to training data: 2.5 < v < 3.6 in all
cases.

m Evaluate the LLRs at testing data, and generated PRC and ROC:

PR curves ROC curves
1.00 - 1.00
0.75 - 0.75
I A=
g 09071 TV-¢ TVN 5 050 TV-t TVN
4 £
~ — LDA % — LDA
0.25 0.25
— QDA — QDA
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
recall false positive rate
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Conclusions

m We defined and characterized a family of EC TV distributions.

m We derived properties such as moments and conditional,
marginal and reshaping distributions.

m We derived ML estimation procedures under 5 scenarios, and
compared them in a performance evaluation.

m We demonstrated that considering heavier tails than Gaussian
can result in better model fitting and classification performance.
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