

text.sc =.objects.acti Selecte + str(modific irror_ot =lect = 0 bpy.cor ct.selecte_ob

Poisson-response Tensor-on-Tensor Regression and Applications

Carlos Llosa and Daniel Dunlavy

SAND2023-09329C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

Motivating problems

detector and emitter

Temporal prediction of dyadic relationships

ICEWS database [1]

- Countries as receivers and senders
- Events such as threats or aid
- Can we predict future relations?

Change-point detection for multi-way relationships

Enron email database [2]

- Employees as senders and receivers
- Events such as words or topics of conversation
- Are there changes in communication • at different times?

Positron emission tomography (PET) reconstruction [3]

- Poisson distribution commonly used for photon counts in emission tomography
- Statistical model for PET reconstruction is ill-posed without restrictions
- Can we reformulate and improve the • model using low-rank tensors?

[1] O'Brien, Crisis Early Warning and Decision Support: Contemporary Approaches and Thoughts on Future Research, ISR, 2010. [2] Enron Email Dataset: https://www.cs.cmu.edu/~enron/

[3] Shepp and Vardi, Maximum Likelihood Reconstruction for Emission Tomography, IEEE TMI, 1982.

From Linear to Multilinear Regression

Tensor models not tractable without using a very large sample size

[4] Llosa and Maitra, Reduced-Rank Tensor-on-Tensor Regression and Tensor-Variate Analysis of Variance, IEEE TPAMI 2022. [5] Lock, Tensor-on-Tensor Regression, JCGS, 2018

Tensor-on-Tensor Regression (ToTR)

$$\mathcal{Y}_i \overset{indep.}{\sim} N(\langle \mathcal{X}_i | \mathcal{B} \rangle, \Sigma_1, \dots, \Sigma_p)$$

Canonical polyadic (CP) ToTR [4,5]: $\mathcal{B} = \llbracket oldsymbol{\lambda}; U_1, \ldots, U_l, V_1, \ldots, V_p
rbracket$

Each rank-1 tensor is the outer product of p + q vector

Other low-rank tensor structures studied in [4]

Make the model tractable with low-rank tensors!

[4] Llosa and Maitra, *Reduced-Rank Tensor-on-Tensor Regression and Tensor-Variate Analysis of Variance*, IEEE TPAMI 2022. [5] Lock, *Tensor-on-Tensor Regression*, JCGS, 2018 **Existing: Gaussian ToTR**

$$\mathcal{Y}_i \overset{ind.}{\sim} N(\langle \mathcal{X}_i | \mathcal{B} \rangle, \Sigma_1, \dots, \Sigma_p)$$

Loglikelihood:

 $\ell(\mathcal{B}) = \sum_{i=1}^{n} \operatorname{vec}(\mathcal{Y}_{i} - \langle \mathcal{X}_{i} | \mathcal{B} \rangle)' \left[\bigotimes_{k=1}^{p} \Sigma_{k}^{-1}\right] \operatorname{vec}(\mathcal{Y}_{i} - \langle \mathcal{X}_{i} | \mathcal{B} \rangle)$

Least squares loss

• CP decomposition constraints

New: Poisson ToTR (PToTR)

Loglikelihood: $\ell(\mathcal{B}) = \sum_{i=1}^{n} \sum_{j} \left[\mathcal{Y}_{ij} \log(\langle \mathcal{X}_i | \mathcal{B} \rangle_j) - \langle \mathcal{X}_i | \mathcal{B} \rangle_j \right]$

Kullback-Leibler divergence loss

- CP decomposition constraints
- Strictly positive *B* constraints

Analogous to the existing model, harder to optimize loss function

Optimization procedure for PToTR

Model		Loglikelihood		Constraints	
$\mathcal{Y}_i \overset{ind.}{\sim} Poisson(\langle \mathcal{X}_i \mathcal{B} \rangle)$		$\ell(\mathcal{B}) = \sum_{i=1}^{n} \sum_{\boldsymbol{j}} \left[\mathcal{Y}_{i\boldsymbol{j}} \log(\langle \mathcal{X}_{i} \mathcal{B} \rangle_{\boldsymbol{j}}) - \langle \mathcal{X}_{i} \mathcal{B} \rangle_{\boldsymbol{j}} \right]$		$\mathcal{B} = \llbracket \boldsymbol{\lambda}; U_1, \dots, U_l, V_1, \dots, V_p \rrbracket > 0$	
Our new multiplicative update rules extend those in the CP-alternating Poisson regression (CP-APR) algorithm [6]					
	Estimation of V _k		Estimation of U _k		
Alternative expression for Loglikelihood:	$\sum_{i=1}^n 1' \left[V_k^* G_{ik} ight.$ -	$- \mathcal{Y}_{i(k)} * \log(V_k^*G_{ik}) ig] 1$	$\sum_{i=1}^n \mathop{[}(\mathop{\mathrm{vec}} U_k^*$	$)'H_{ik}-(\operatorname{vec}\mathcal{Y}_i)'*\log\left((\operatorname{vec}U_k^*)'H_{ik} ight)]1$	
Multiplicative update: (non-decreasing loglikelihood)	$ \widehat{V}_k^* \leftarrow \widehat{V}_k^* * \left\{ \sum_{i=1}^n \left[\\ \otimes \left\{ 1 \left(\sum_{i=1}^n \right) \right\} \right\} \right\} $	$\left\{ \left(\mathcal{Y}_{i(k)} \oslash \left(\widehat{V}_k^* G_{ik} \right) \right) G_{ik}' \right] ight\}$	$(\operatorname{vec} \widehat{U}_k^*) \leftarrow <$	$\left\{\sum_{i=1}^{n} \left[H_{ik}\left(\operatorname{vec}(\mathcal{Y}_{i}) \oslash \left(H_{ik}'(\operatorname{vec}\widehat{U}_{k}^{*})\right)\right)\right]\right\}$ * $\operatorname{vec}\left(\widehat{U}_{k}^{*} \oslash \sum_{i=1}^{n} W_{i}\right).$	
Now we have the tools for tackling our three PToTR applications!					

[6] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012.

Application I: Autoregressive Model for the ICEWS Database

 $\mathcal{Y}_t(i_1, i_2, i_3)$ = # times action i_3 was taken by country i_1 on country i_2 at week t.

$$\sim^{ndep.} \operatorname{Poisson}(\langle \mathcal{Y}_{t-1} | \mathcal{B} \rangle)$$

 $\mathcal{B}(i_1, i_2, i_3, j_1, j_2, j_3) = \text{Effect that the}$ **previous** i_3 event from i_1 towards i_2 has on **current** j_3 event from j_1 towards j_2 .

*Not well defined without accounting for trend

Other longitudinal effects by choosing \mathcal{X}_t in:

$$\mathcal{Y}_t \overset{indep.}{\sim} \operatorname{Poisson}(\langle \mathcal{X}_t | \mathcal{B} \rangle)$$

• AR(1) with no trend (as before):

$$\mathcal{X}_t = egin{bmatrix} \mathcal{Y}_{t-1} \end{bmatrix}$$

• AR(1) with q-th order polynomial trend:

$$\mathcal{X}_t = egin{array}{c} \mathcal{Y}_{t-1} \ rac{1 \ t \ t^2 \dots t^q}{\cdot} \end{array}$$

• AR(s) with q-th order polynomial trend:

Application I: Autoregressive Model for the ICEWS Database

Data selected as in [7]:

- Weekly data from 2004 to mid-2014
- 25 countries
- 4 quad classes (type of events)

Our Poisson model fits the count data better!

[7] Hoff, Multilinear tensor regression for longitudinal relational data, Ann. Appl. Stat., 2015

Application II: Poisson model for Positron Emission Tomography [3]

- Poisson distribution for number of photon coincidences in sinogram
- Radon basis \mathcal{K} is a 4D tensor with combined dimensions
- Element-wise formulated as:

 $y_{i_1i_2} \overset{ind.}{\sim} \operatorname{Poisson}(\langle B, K_{i_1i_2} \rangle)$

- Here $K_{i_1i_2}$ is one matrix slice of $\mathcal K$

2D PET is scalar-response, matrix-predictor Poisson regression!

[3] Shepp and Vardi, *Maximum Likelihood Reconstruction for Emission Tomography*, IEEE TMI, 1982.

Application II: From 2D to 4D PET

2D PET model – elementwise

$$y_{i_1 i_2} \stackrel{ind.}{\sim} \operatorname{Poisson}(\langle K_{i_1, i_2}, B \rangle)$$

- Same model as before
- Reconstructs 2D image B
- Scalar-response, matrix-predictor
- 2D image to reconstruct
- Ill-posed without additional restrictions [8]

4D PET model : volume across time

 $Y_{i_1,i_2} \overset{ind.}{\sim} \operatorname{Poisson}(\langle K_{i_1,i_2} | \mathcal{B} \rangle)$

- Extension of 2D PET for depth and time
- Reconstruct 4D image ${\cal B}$
- Matrix-response, matrix-predictor
- 4D image to reconstruct
- Ill-posed without additional restrictions [8]
- Other types of N-D PET (such as using 3D Radon transforms) can also be framed as PToTR

[8] Snyder et. al., Noise and Edge Artifacts in Maximum-Likelihood Reconstructions for Emission Tomography, IEEE TMI, 1987.

Application II: A simulation of low-rank 4D PET

$$Y_{i_1,i_2} \overset{ind.}{\sim} \operatorname{Poisson}(\langle K_{i_1,i_2} | \mathcal{B} \rangle)$$

- True 4D image \mathcal{B} : four MRI measurements on the same subject and scanner [9]
- 256 x 256 matrix slices \rightarrow 256 x 1024 sinograms
- We use 2%, 8% and 16% of the data.
- We implement different methods:
 - Full MLEM: no restrictions on *B*: number of parameters: ~ 63 million
 - PToTR: CP-restricted \mathcal{B} with rank 84: Number of parameters: ~ 63 thousand
 - We try ranks 2, 5, 21, 84, 336

[9] Hawco, et. al., A longitudinal multi-scanner multimodal human neuroimaging dataset, Scientific Data, 2022

Low-rank image reconstruction stabilizes the estimation !

Application III: A path towards change-point detection

Analysis of variance (ANOVA):

Tool for distinguishing between groups in scalar data.

Multivariate ANOVA (MANOVA):

Tool for distinguishing between groups in **vector** data.

Tensor-variate ANOVA (TANOVA):

Tool for distinguishing between groups in **tensor** data, and across **multiple** factors.

Poisson-response TANOVA (PTANOVA):

Tool for distinguishing between groups in **tensor count** data, and across **multiple** factors.

Let's go through the math in the same way we did for regression

Change-point detection:

• **Group** data before and after some point in time

Application III: Tensor-Variate Analysis of Variance (TANOVA)[4]

TANOVA is a special case of ToTR (\mathcal{X}_i are indicator tensors) that generalizes ANOVA Special Case (Indicator \mathcal{X}_i) **General Model** Definition $y_i \overset{indep.}{\sim} N(\langle \boldsymbol{x}_i | \boldsymbol{\beta} \rangle, \sigma^2)$ **ANOVA** Linear regression (LR) $\boldsymbol{y}_i \overset{indep.}{\sim} N(\langle \boldsymbol{x}_i | B \rangle, \Sigma)$ MANOVA Multivariate LR $y_i \overset{indep.}{\sim} N(\langle \mathcal{X}_i | \mathcal{B} \rangle, \sigma^2)$ **Factorial designs Tensor regression** $\mathcal{Y}_i \overset{indep.}{\sim} N(\langle \mathcal{X}_i | \mathcal{B} \rangle, \Sigma_1, \dots, \Sigma_p)$ **Tensor-on-tensor regression** TANOVA **Poisson ToTR (PToTR)** $\mathcal{Y}_i \overset{ind.}{\sim} Poisson(\langle \mathcal{X}_i | \mathcal{B} \rangle)$ **Poisson TANOVA** We can do change-point detection through PTANOVA!

[4] Llosa and Maitra, Reduced-Rank Tensor-on-Tensor Regression and Tensor-Variate Analysis of Variance, IEEE TPAMI 2022.

Application III: PTANOVA and Change-Point Detection

- Mean before change-point: \mathcal{M}_1
- Mean after change-point: \mathcal{M}_2
- Change-point location: au_1

Equivalent PTANOVA formulation $\mathcal{Y}_t \sim \operatorname{Poisson}(\langle \boldsymbol{x}_t | \mathcal{B} \rangle)$ $\boldsymbol{x}_t = \left\{ \begin{array}{cc} (1,0)' & t = 1, \dots, \tau_1 \\ (0,1)' & t = \tau_1 + 1, \dots, n_T \end{array} \right\}$

- Mean before change-point: $\langle (1,0)' | \mathcal{B} \rangle$
- Mean after change-point: $\langle (0,1)' | \mathcal{B} \rangle$
- Change-point location: τ_1

Application III: Change-point detection experiment

- 10 Students talking about 15 topics over 14 time-steps: 14 count tensors of size 10 x 10 x 15.
- Event occurs at time τ that changes communication pattern:
 - All conversation generated independently from Poisson(λ), $\lambda = 5$.
 - One topic changes to Poisson($\lambda \times a$) after time τ , where a = 1, 2, 3, 5, 20, 100.

Conclusions and path forward

- Model: Linear regression \rightarrow Tensor regression \rightarrow Poisson tensor regression
 - Low-rank tensors and constrained optimization
- Methods:
 - Tensor autoregressive models: temporal prediction
 - 2D PET \rightarrow 4D PET: stable estimation
 - ANOVA \rightarrow TANOVA \rightarrow PTANOVA: change-point detection for tensor count data
- Where we are going
 - Efficient model-fitting algorithms
 - Multiple change-point detection
 - Inference on estimated coefficients

Thank You!

For follow-up questions reach out to:

- Carlos Llosa <u>cjllosa@sandia.gov</u>,
- Danny Dunlavy <u>dmdunla@sandia.gov</u>