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Suicide Risk Assessment

2nd leading cause of death for people under 35 in the US.

Accounted for 2/3 of all US homicides in 2017.

Assessment is challenging: 78% of patients who die of suicide

deny ideation in their last communication with a professional.

Just et al. (2017) provided fMRI data from 17 young suicide

ideators, 9 have attempted suicide.

Each subject was exposed to 10 positive, 10 negative, and 10

death-related word stimuli.

Stimuli extracted from time series using the general linear

model. βs used as the response in the tensor-linear model.
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Suicide Risk Assessment
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regression coefficient (B) Error (E)

= ∗ +

Y = XB + E

The ith subject has Yi ∈ R3×10×43×56×20 as a tensor-response.

This is MANOVA with vec(Yi ) as response.

B has 96,320 unconstrained parameters.

Error covariance has 1,043,724,242,400 unconstrained parameters.

Goal: Identifying brain regions associated with a significant

interaction between suicide group status and type of stimuli. 5
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Tensor Partial Contraction

Tensor-on-Tensor Regression:

Yi = ⟨Xi |B⟩+ Ei ,
Xi ∈ Rh1×...×hl , Yi ∈ Rm1×...×mp , B ∈ Rh1×...×hl×m1×...×mp .

4x2  2x1                  4x1
4x2x2    2x1                    4x2x1

4x2x2       2x2                                     4x1
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Tensor Reshapings

Tensor-on-Tensor Regression:

Yi = ⟨Xi |B⟩+ Ei ,
Xi ∈ Rh1×...×hl , Yi ∈ Rm1×...×mp , B ∈ Rh1×...×hl×m1×...×mp .
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The Tensor-Variate Normal (TVN) Distribution

Tensor-on-Tensor Regression:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

E ∼ Nm1,m2,...,mp (M,Σ1,Σ2, . . . ,Σp)

⇐⇒ vec(E) ∼ N∏p
k=1 mk

vec(M),
1⊗

k=p

Σk


Introduced by Hoff (2011); Akdemir and Gupta (2011);

Ohlson et al. (2013); Manceur and Dutilleul (2013).

Unconstrained Σ is of size (
∏p

k=1mk)(
∏p

k=1mk + 1)/2 .

Constrained Σ is of size
∑p

k=1[mk(mk + 1)/2].

Σk(1, 1) = 1 to deal with identifiability. 9



The Tucker Simplifying Format

Tensor-on-Tensor Regression:

Yi = ⟨Xi |B⟩+ Ei , B ∈ Rh1×h2×...×hl×m1×m2×...×mp

B = [[V;A1,A2,A3]]

See Tucker (1966); Kolda and Bader (2009).

Unconstrained B ∈ R15×15×15 has 3,375 parameters.

Constrained to a Tucker format of rank (3,4,5) leads to 240.
10



The Canonical CP Simplifying format

Tensor-on-Tensor Regression:

Yi = ⟨Xi |B⟩+ Ei , B ∈ Rh1×h2×...×hl×m1×m2×...×mp

B = [[A1,A2,A3]]

See Hitchcock (1927); Kolda and Bader (2009).

Unconstrained B has 3,375 parameters.

Constrained to a CP format of rank 4 leads to only 180.
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The Tensor Ring (TR) Simplifying Format

Tensor-on-Tensor Regression:

Yi = ⟨Xi |B⟩+ Ei , B ∈ Rh1×h2×...×hl×m1×m2×...×mp

=
[K,L,M,N]

[r1,K, r2] [r2,L, r3]

[r4 , N , r1] [r3 ,M ,r4]

B = tr
(
A1×1A2×1A3×1A4

)
See Affleck et al. (1987); Zhao et al. (2016).

Referred to matrix product state (MPS) in many-body physics.

Unconstrained B has 256 parameters.

Constrained to a TR format of rank (2,2,2,2) leads to only 64.
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Review of Tensor-on-Tensor Regression

Tensor-on-Tensor Regression:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

Identity matrices for Σs and CP-formatted B in Lock (2017).

OP-formatted B in Hoff (2014).

BOP(i , j , k , l) = M1(i , j)M2(k , l)

Tucker format in Li and Zhang (2017):

Vector-variate Xi .

Specific structure of Σ1, . . . ,Σp.

Tucker format on last p sides of B only.
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Our Contributions to Tensor-on-Tensor Regression

Tensor-on-Tensor Regression:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

We propose a unified framework for multiple formats:

We frame Hoff (2014) in the context of ToTR.

We extend Lock (2017) to allow for TVN error.

We extend Li and Zhang (2017) to full Tucker format,

arbitrary Σs.

We propose the TR format.

We don’t make hard assumptions on Σ1, . . . ,Σp.

We study the distribution of B̂ and perform inference.
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Maximum Likelihood Estimation

ToTR with Tucker Format:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

B = [[V; L1, L2, . . . , Ll ,M1,M2, . . . ,Mp]],

M ′
kΣ

−1
k Mk = Idk , Σk(1, 1) = 1.

Loglikelihood where Σ = ⊗1
k=pΣk :

ℓ = −n

2
log |σ2Σ|− 1

2σ2

n∑
i=1

[
vec(Yi − ⟨Xi |B⟩)′Σ−1 vec(Yi − ⟨Xi |B⟩)

]
Block relaxation de Leeuw (1994): partitions the parameter

and iteratively optimizes each while fixing the others. 15



Maximum Likelihood Estimation

ToTR with Tucker Format:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

B = [[V; L1, L2, . . . , Ll ,M1,M2, . . . ,Mp]].

Algorithm 1: ML Estimation of ToTR under Tucker Format

1 while convergence is not met do

2 for k ∈ {1, 2, . . . , l} do

3 Estimate Lk given fixed values of L−k ,M,Σ

4 end

5 for k ∈ {1, 2, . . . , p} do

6 Estimate Mk given fixed values of L,M−k ,Σ

7 end

8 Estimate V given fixed values of L,M,Σ for

k ∈ {1, 2, . . . , p} do

9 Estimate (σ2,Σk) given fixed values of L,M,Σ−k

10 end

11 end
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Estimating L1

ToTR with Tucker Format:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

B = [[V; L1, L2, . . . , Ll ,M1,M2, . . . ,Mp]],

Express the model as multivariate multiple linear regression

vec(Yi ) = Hi vec(L1) + ei , ei
iid∼ Nm(0, σ

2Σ),

where the matrix Hi involves (Xi ,V, L2, . . . , Ll ,M1, . . . ,Mp).

The MLE is the generalized least squares estimator.
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Profiling V from the loglikelihood

ToTR with Tucker Format:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

B = [[V; L1, L2, . . . , Ll ,M1,M2, . . . ,Mp]],

Rewrite the problem based on M =
1⊗

k=p

Mk and L =
1⊗

k=l

Lk as

vecYi = MV ′
<l>L

′(vecXi ) + ei , ei
iid∼ Nm(0, σ

2Σ).

Recall M ′Σ−1M is an identity matrix.
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Block for M1 after profiling V

ToTR with Tucker Format:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

B = [[V; L1, L2, . . . , Ll ,M1,M2, . . . ,Mp]], M
′
kΣ

−1
k Mk = Idk

The profiled (on V̂) loglikelihood in terms of M1 is

ℓp(M1) = ||M ′
1Σ

−1
1 Q1||22

for some Q1 that involves (X ,Σ−1,M−1, L).

For Σ
−1/2
1 Q1 = UDV ′, we have

M̂1 = argmax
M′

1Σ
−1
1 M1=Id1

ℓp(M1) = Σ
1/2
1 U∗

where U∗ are the leading dk columns of U.
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Block for (Σ1, σ
2)

ToTR with Tucker Format:

Yi = ⟨Xi |B⟩+ Ei , Ei
iid∼ Nm1,m2...,mp(0, σ

2Σ1,Σ2, . . . ,Σp),

Σk(1, 1) = 1

The loglikelihood in terms of Σ1 is

ℓ1(Σ1) = −nm−1

2
log |Σ1| −

1

2σ2
tr(Σ−1

1 S1)

for some matrix S1 that involves (B,Σ−1), m−1 =
∏

k ̸=1mk .

Constrained optimization by Glanz and Carvalho (2018)

Σ̂1 = argmax
Σ1(1,1)=1

(ℓ1(Σ1)) = ADJUST (nm−1, σ
2,S1).

σ̂2 =
1

nm
tr(Σ̂−1

1 S1) estimated alternatingly.
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Asymptotic Sampling Distributions

Theorem 3.1:

Let X = [(vecX1) . . . (vecXn)], B̂TK = [[V̂; L̂1,.. ., L̂l , M̂1,.. ., M̂p]],

BTK = [[V; L1,.. ., Ll ,M1,.. .,Mp]]. and PL = [L(L′L)−1L′]. Then

vec(B̂TK )
d→ N

(
vec (BTK ) , σ

2MM ′ ⊗ (PL(XX
′)−1PL)

)
as n → ∞.

Proof outline:

V̂ is a linear transformation of Gaussian data.

(L̂1, . . . , L̂l , M̂1, . . . M̂p) are consistent.

vec(B̂TK ) is assembled using Slutsky’s theorem.

Similar results for CP and TR formats on B.
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Andean Camelids Simulation

Matrix-on-Matrix Regression: Two Factor ANOVA

Yijk = ⟨Xij |B⟩+ Eijk , Eijk
iid∼ N 87,106(0, σ

2Σ1,Σ2)

Xij has 1 in position (i , j) and zeroes everywhere else.

⟨Xij |B⟩ is the jth RGB color matrix of the ith andean camelid.

k = 1, 2, . . . , 50 are repetitions.

True CPset CPopt TKset TKopt TRset TRopt OP

A
lp
ac
a

V
ic
u
ñ
a

L
la
m
a

G
u
an
ac
o

BIC 1.692×107 1.586×107 1.695×107 1.612×107 1.703×107 1.590×107 1.772×107

% reduction 97.3% 67.1% 97.4% 41.5% 97.5% 57.9% 99.4%

1
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Labeled Faces in the Wild

We selected 605 facial images from more than 13,000.

Three ethnic origins: African, European and Asian.

Four cohorts: child, youth, middle-aged and senior.

Two genders: male and female.

Attributes taken from Afifi and Abdelhamed (2019).
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Labeled Faces in the Wild

Tensor-on-Tensor Regression: Three Factor ANOVA

Yijkl = ⟨Xijk |B⟩+ Eijkl , Eijkl
iid∼ N 151,111,3(0, σ

2Σ1,Σ2,Σ3)

Yijkl is the lth repetition of the color picture of someone with ith gender,

jth ethnic origin and kth cohort.

Xijk has 1 in position (i , j , k) and zeroes everywhere else.

B = tr(L1 ×1 L2 ×1 L3 ×1 M1 ×1 M2 ×1 M3) has a TR format.
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Assessing Suicide Risk

Tensor-on-Tensor Regression:

Yi = ⟨xi |B⟩+ Ei , Ei
iid∼ N (0, σ2Σ1,Σ2,Σ3,Σ4,Σ5),
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β1 . . . β11 . . . β21 . . .

regression coefficient (B) Error (E)

= ∗ +

Y = XB + E
Tucker format on B, with rank chosen using BIC.

Dimension reduction in B of 97.3%.

Σs chosen as AR(1), unconstrained and equicorrelation

matrices.
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Sampling Distribution of the Interaction Term

Sampling distribution for XX ′ = diag(9, 8):

B̂ d→ N 2,3,10,43,56,20(B, σ2(XX ′)−1,M1M
′
1,M2M

′
2,M3M

′
3,M4M

′
4,M5M

′
5),

Interaction term: B̂∗ = B̂ ×1 c1 ×2 C2 ×3 c3, where

c1 =
[
1 −1

]
, C2 =

1 0 −1

1 −1 0

0 −1 1

 and c3 =
[
1 1 . . . 1

]
.

Marginally standardize B̂∗ to obtain Ẑ.

Under the null hypothesis Ho : B∗(i , j , k, l) = 0, we have that

Z∗(i , j , k , l)
d→ N(0, 1).
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Interaction 3D maps

PC associated with depression and

rumination

OFC associated with emotions’

influence on decision-making

PC is even more pronounced

D/VMPFC, MB, PCC involved in

processing emotional info

Low TPJ and PMC, but not as much

overall activation

positive and negative words are more

neurally similar
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Conclusions

Extended MANOVA to tensor-variate structure.

Different tensor formats compared using BIC.

Provided MLE algorithms, their asymptotic properties,

computational complexity, and evaluated them with

simulation.

Distinguished facial characteristics.

Identified brain regions associated with suicide attempt, and

negative, positive, or death-related stimuli
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Further Work

Time-series integrated Tensor-on-Tensor Regression for fMRI

studies.

Robust estimation for deviations from tensor-variate normality.

Classification and prediction.

Tensor-variate Mixed effects models and Gauge R& R
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