Reduced-Rank Tensor-on-Tensor Regression
and Tensor-Variate ANOVA

Carlos Llosa Vite
Join work with Ranjan Maitra

Deparment of Statistics
lowa State University



Motivation: Suicide Risk Assessment

Methodology
m A Primer on Tensors
m Tensor-on-Tensor Regression

m Maximum Likelihood Estimation and Sampling Distributions
Performance and Data applications

m Andean Camelids Simulation

m Labeled Faces in the Wild

m Assessing Suicide Risk



Motivation: Suicide Risk Assessment



Suicide Risk Assessment

m 2nd leading cause of death for people under 35 in the US.

m Accounted for 2/3 of all US homicides in 2017.

m Assessment is challenging: 78% of patients who die of suicide
deny ideation in their last communication with a professional.

m Just et al. (2017) provided fMRI data from 17 young suicide
ideators, 9 have attempted suicide.

m Each subject was exposed to 10 positive, 10 negative, and 10
death-related word stimuli.

m Stimuli extracted from time series using the general linear
model. (s used as the response in the tensor-linear model.



Suicide Risk Assessment

image responses ()) design (X) regression coefficient (B) Error (€)
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m The ith subject has ); € R3x10x43x56x20 55 3 tensor-response.

m This is MANOVA with vec());) as response.

m B has 96,320 unconstrained parameters.

m Error covariance has 1,043,724,242,400 unconstrained parameters.

m Goal: Identifying brain regions associated with a significant
interaction between suicide group status and type of stimuli. 5



Methodology



Tensor Partial Contraction

Tensor-on-Tensor Regression:
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Tensor Reshapings

Tensor-on-Tensor Regression:

Vi =(Xi|B) + &,
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The Tensor-Variate Normal (TVN) Distribution

Tensor-on-Tensor Regression:

yi — <XI|B> ar 5,-, gi ”’\q le,mz...7mp(07 0-2217 227 ceey Zp)u

5 ~ le,mg,...,mp (Ma Zlv Z27 cety Zp)
1
< vec(€&) NNH’Z:l my vec(M),@Zk

k=p

Introduced by Hoff (2011); Akdemir and Gupta (2011);

Ohlson et al. (2013); Manceur and Dutilleul (2013).
Unconstrained X is of size (IT{_; me)(IT0_; mk +1)/2 .
Constrained ¥ is of size Y p_ [mx(mi + 1)/2].

Y(1,1) =1 to deal with identifiability. 9



The Tucker Simplifying Format

Tensor-on-Tensor Regression:

yi — <X,|B> +5i’ Be Rhl><h2><...><h,><m1><m2><...><m,J

A

M,m]

B = |IV, A17A27A3]]

m See Tucker (1966); Kolda and Bader (2009).
m Unconstrained B € R15%15%15 K5 3,375 parameters.
m Constrained to a Tucker format of rank (3,4,5) leads to 240.
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The Canonical CP Simplifying format

Tensor-on-Tensor Regression:

yi — <X,|B> +5i’ Be Rhl><h2><...><h,><m1><m2><...><m,J

B = [A1, Az, A3]

m See Hitchcock (1927); Kolda and Bader (2009).
m Unconstrained B has 3,375 parameters.

m Constrained to a CP format of rank 4 leads to only 180.
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The Tensor Ring (TR) Simplifying Format

Tensor-on-Tensor Regression:

Vi = <X,'|B> + & Be R xh2X .. xXhpxmixmyX...xmp

R4x4x4x4 A Ao

B e [r K )l @ [ryL, 13l
.A4 @ @ .A3

[K,L,M,N] [rg, N, 1l [ry,M,r,]

B =tr (./41 X 1./42 X 1./43 X 1./44)

m See Affleck et al. (1987); Zhao et al. (2016).

m Referred to matrix product state (MPS) in many-body physics.
m Unconstrained B has 256 parameters.

m Constrained to a TR format of rank (2,2,2,2) leads to only 64.
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Review of Tensor-on-Tensor Regression

Tensor-on-Tensor Regression:

Vi= (XIB) + &, E " Nmpma.my(0,0%51,52,...,p),

m Identity matrices for £s and CP-formatted B in Lock (2017).
m OP-formatted B in Hoff (2014).

BOP(ivj) k? l) = Ml(’v./)M2(k7 /)

m Tucker format in Li and Zhang (2017):

m Vector-variate X;.
m Specific structure of >1,...,%,.
m Tucker format on last p sides of 3 only.
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Our Contributions to Tensor-on-Tensor Regression

Tensor-on-Tensor Regression:

iid

yi - <XI|B> 2 gh gi ~ le,mz...,mp(0702zl, 227 o 7zp)7

m We propose a unified framework for multiple formats:

m We frame Hoff (2014) in the context of ToTR.

m We extend Lock (2017) to allow for TVN error.

m We extend Li and Zhang (2017) to full Tucker format,
arbitrary Xs.

m We propose the TR format.

m We don’t make hard assumptions on X1,...,%,.

m We study the distribution of B and perform inference.
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Maximum Likelihood Estimation

ToTR with Tucker Format:

Vi = (XIB) + &, & Nmpmpmy(0,0%51, 50, Tp),
B = [V;Ll)L27-"7L/7M17M27"')Mp]]7
MY My =1y, Zi(1,1) = 1.

m Loglikelihood where T = @} _ T:
1 n
£ = —Zlog|o?T|—5=5 3 [vec(Yi — (XIB)Y T vec(; - (Xi[8))]
g
i=1
m Block relaxation de Leeuw (1994): partitions the parameter
and iteratively optimizes each while fixing the others. 15



Maximum Likelihood Estimation

ToTR with Tucker Format:

Vi = (XIB) + &, & Nmpmp.my(0,0%51, 50, Tp),

B = |[V;L]_,Lz,...,L/,Ml,MQ,...,Mp]].

Algorithm 1: ML Estimation of ToTR under Tucker Format

1 while convergence is not met do

2 for k€ {1,2,...,/} do

3 | Estimate L given fixed values of L_;, M, ¥
4 end

5 for k € {1,2,...,p} do

6 ‘ Estimate M given fixed values of L, M_;, ¥
7 end

8 Estimate V given fixed values of L, M, ¥ for

ke{l,2,...,p} do

9 | Estimate (0, Ty given fixed values of L, M,¥_
10 end
11 end
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ToTR with Tucker Format:

yi - <XI|B> o giy 8,’ %le,mg...,mp(O,Ozzl, 227 o 7zp)7

B = |[V;L1,L2,...,L/,Ml,MQ,...,Mp]],

m Express the model as multivariate multiple linear regression
o
vec();) = Hivec(L1) + e, e ~ Nn(0,0°%),

where the matrix H; involves (X, V, Lo, ..., L;, My, ..., Mp).

m The MLE is the generalized least squares estimator.
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Profiling V from the loglikelihood

ToTR with Tucker Format:

Vi=(XIB + &, & Nomymy.m(0,6251,52,...,5,),
B = ﬂV;Ll,LQ,...,L/,Ml,Mz,...,Mp]]’

1 1
m Rewrite the problem based on M = @ My and L = Q) Ly as
k=p k=1

vecY; = MV_, L'(vecX;) + e, e " N m(0,0%5).

m Recall M’ 1M is an identity matrix.
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Block for M, after profiling V

ToTR with Tucker Format:

iid
yi = <X,|B> + g,’, 5,' ~ le,mg..,,mp(07 0'221, 22, . ,Zp),
B = [Vili, Lo, ..., L, My, Mo, ... Mp], MiZ, P My = 1y,

m The profiled (on ﬁ) loglikelihood in terms of My is
lp(M1) = [|MIZ1 Qulf2

for some @ that involves (X, X_1, M_q,L).
m For 2;1/201 = UDV’, we have

My = argmax £,(My) = Z}/ZU*
M{E T My=1g
where U* are the leading d columns of U.
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Block for (2;,0?)

ToTR with Tucker Format:

Vi = (XIB) + &, & Nmpmp.my(0,0%51, 50, Tp),
Yi(1,1) =1

m The loglikelihood in terms of %1 is

(X)) = —

nm_y 1 1
5 log |X1| — ?tr(zl S1)

for some matrix S; that involves (B,X_1), m_; = ]_[k;,,él my.
m Constrained optimization by Glanz and Carvalho (2018)

$1 = argmax ({1(X1)) = ADJUST (nm_1, 02, S1).
¥1(1,1)=1
1~
w52 = %tr(z;lsl) estimated alternatingly.
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Asymptotic Sampling Distributions

Theorem 3.1:

Let X = [(vecXy)...(vec X,)], Bri = [V;L1,..., L, Mh,..., My],
BTK = IIV, Ll,..., L/, Ml,..., MPII and P[_ = [L(L/L)ilL/] Then

vec(Brk) 4N (vec (Brk) MM @ (PL(XX’)_IPL))

as n — oQ.

m Proof outline:

m Vs a linear transformation of Gaussian data.
m (Ly,...,L;,My,... M,) are consistent.
m vec(Bri) is assembled using Slutsky’s theorem.

m Similar results for CP and TR formats on B.

21



Performance and Data applications

22



Andean Camelids Simulation

Matrix-on-Matrix Regression: Two Factor ANOVA

Yik = (Xi|B) + Eji,  Eij %NSZIOG(O?JZZI, X))

m Xj has 1 in position (/,;) and zeroes everywhere else.
m (Xj|B) is the jth RGB color matrix of the ith andean camelid.

m k=1,2,...,50 are repetitions.

True  CPgt CPy

Alpaca Vicuna Llama Guanaco

i

BIC 1.692x107  1.586x107  1.695x107 1.612x107 1.703x107 1.590x107 1.772x107 23
% reduction  97.3% 67.1% 97.4% 41.5% 97.5% 57.9% 99.4%




Labeled Faces in the Wild

m We selected 605 facial images from more than 13,000.
m Three ethnic origins: African, European and Asian.

m Four cohorts: child, youth, middle-aged and senior.

m Two genders: male and female.

m Attributes taken from Afifi and Abdelhamed (2019).
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Labeled Faces in the Wild

Tensor-on-Tensor Regression: Three Factor ANOVA

Vi = (Xij|B) + Eijur,  Eijua ~ Nisi,111,3(0, 02 %1, o, ¥3)

m Y is the /th repetition of the color picture of someone with ith gender,
jth ethnic origin and kth cohort.

m X has 1 in position (i, ), k) and zeroes everywhere else.
m B=tr(Ly x1 Lo xt L3 xE My xt My x?! M3) has a TR format.

(‘hild Youth Middle Aged Senior
M M

Asian

African

Europcan
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Assessing Suicide Risk

Tensor-on-Tensor Regression:

iid

Vi={x|B) + &, & ~N(0,0°%1,%2,%3,%4,%5),

image responses (J) design (X) regression coefficient (B) Error (£)
1
0 T
T 0 f f
A
0 positive negative death-related .. 7 -

words stimuli (10 of each type)

words stimuli (10 of each type!

m Tucker format on B, with rank chosen using BIC.
m Dimension reduction in B of 97.3%.
m Ys chosen as AR(1), unconstrained and equicorrelation

matrices.
26



Sampling Distribution of the Interaction Term

Sampling distribution for XX’ = diag(9, 8):

B % Na310.43,56.20(B, 02 (XX') L, My MY, Mo M, M3 M3, My M, Ms M),

~

m Interaction term: B, = B x1 ¢1 X» C X3 €3, where

1 0 -1
q:@ 71}, G — (1) j (1J andC3:[1 1. 1}.

Marginally standardize B. to obtain Z.

Under the null hypothesis H, : B.(i,j, k,/) = 0, we have that
Z.(i,j, k, 1) % N(O,1).
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Interaction 3D maps

m PC associated with depression and
rumination

m  OFC associated with emotions’
influence on decision-making

m PC is even more pronounced

m D/VMPFC, MB, PCC involved in
processing emotional info

m Low TPJ and PMC, but not as much
overall activation

m positive and negative words are more
neurally similar

(PC) precuneus (MB) mamillary bodies (OFC) orbital frontal cortex

(PMC) premotor cortex  (SPC) superior parietal cortex  (VVC) ventral visual cortex

{DVC) dorsal visual cortex {TPJ) temporal-parietal junction (DMPFC) dorsal medial frontal cortex
{OL) occipital lobe {PCC) posterior cingulate cortex (VMPFC) ventral medial prefrontal cortex
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Conclusions

m Extended MANOVA to tensor-variate structure.
m Different tensor formats compared using BIC.

m Provided MLE algorithms, their asymptotic properties,
computational complexity, and evaluated them with

simulation.
m Distinguished facial characteristics.

m Identified brain regions associated with suicide attempt, and
negative, positive, or death-related stimuli

29



Further Work

m Time-series integrated Tensor-on-Tensor Regression for fMRI
studies.

m Robust estimation for deviations from tensor-variate normality.
m Classification and prediction.

m Tensor-variate Mixed effects models and Gauge R& R

30
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